Hyperelastic bone may be a 3D-printed solution for helping to mend our bones in the future. Cost-effective and customizable, the material is both a “structural element and a scaffold for bone regeneration,” as shown in the Science Magazine video above. On Northwestern University’s work they explain:
Their hyperelastic bone is a type of scaffold made up of hydroxyapatite, a naturally occurring mineral that exists in our bones and teeth, and a biocompatible polymer called polycaprolactone, and a solvent. Hydroxyapatite provides strength and offers chemical cues to stem cells to create bone. The polycaprolactone polymer adds flexibility, and the solvent sticks the 3D-printed layers together as it evaporates during printing. The mixture is blended into an ink that is dispensed by the printer, layer by layer, into exact shapes matching the bone that needs to be replaced. The idea is, a patient would come in with a nasty broken bone—say, a shattered jaw—and instead of going through painful autograft surgeries or waiting for a custom scaffold to be manufactured, he or she could be x-rayed and a 3D-printed hyperelastic bone scaffold could be printed that same day.
Next, watch more 3D printing videos, including Derby the dog runs on his 3D printed prosthetic paws and Boy gets prosthetic hand made by 3-D printer.
This Webby award-winning video collection exists to help teachers, librarians, and families spark kid wonder and curiosity. TKSST features smarter, more meaningful content than what's usually served up by YouTube's algorithms, and amplifies the creators who make that content.
Curated, kid-friendly, independently-published. Support this mission by becoming a sustaining member today.